SOLITARY SOLUTIONS OF COUPLED KdV AND HIROTA–SATSUMA DIFFERENTIAL EQUATIONS
نویسندگان
چکیده
By considering the set of coupled KdV differential equations as a zero curvature representation of some fourth order linear differential equation and factorizing the linear differential equation, the hierarchy of solutions of the coupled KdV differential equations have been obtained from the eigen spectrum of constant potentials.
منابع مشابه
Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملApplications of He′s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the timefractional Klein-Gordon equation, and the time-fractional HirotaSatsuma coupled KdV system. The Hes semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply Hes semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the timefractional Hirota...
متن کاملNew explicit exact solutions for the generalized coupled Hirota-Satsuma KdV system
In this paper, we study the generalized coupled Hirota–Satsuma KdV system by using the two new improved projective Riccati equations method. As a result, many explicit exact solutions, which contain new solitary wave solutions, periodic wave solutions and combined formal solitary wave solutions and combined formal periodic wave solutions are obtained. c © 2007 Published by Elsevier Ltd
متن کاملA New Fractional Subequation Method and Its Applications for Space-Time Fractional Partial Differential Equations
A new fractional subequation method is proposed for finding exact solutions for fractional partial differential equations (FPDEs). The fractional derivative is defined in the sense ofmodified Riemann-Liouville derivative. As applications, abundant exact solutions including solitary wave solutions as well as periodic wave solutions for the space-time fractional generalized Hirota-Satsuma coupled...
متن کاملWeierstrass semi-rational expansion method and new doubly periodic solutions of the generalized Hirota-Satsuma coupled KdV system
In the paper, with the aid of symbolic computation, we investigate the generalized Hirota–Satsuma coupled KdV system via our Weierstrass semi-rational expansion method presented recently using the rational expansion of Weierstrass elliptic function and its first-order derivative. As a consequence, three families of newWeierstrass elliptic function solutions via Weierstrass elliptic function }(n...
متن کامل